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Chaotic dynamics in billiards using Bohm’s quantum mechanics
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The dynamics of a particle in square and circular billiards is studied within the framework of Bohm’s
quantum mechanics. While conventional quantum mechanics predicts that the system shows no indication of
chaotic behavior for these geometries from either the eigenvalue spectra distribution or the structure of the
eigenfunctions, we find that in Bohm’s quantum mechanics these systems exhibit both regular and chaotic
behavior, depending on the form of the initial wave packet and on the particle’s initial position.
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The question of how the properties of nonintegrable cl
sical Hamiltonians are manifested in the corresponding qu
tum systems has been of great interest in recent years@1–4#.
A variety of problems has been considered to investigate
connections between classical and quantum systems u
the conditions where classical chaos is present@3,5–12#. In
particular, two-dimensional billiards is among the proble
most studied@5–7,9,12,13#.

The stadium~or noncircular billiard! is a planar table with
circular ends of radiusa separated by parallel sides of leng
2b. The classical trajectories in such systems are found to
regular~integrable! in the circular limit (b50), and chaotic
~nonintegrable! for the noncircular case (b.0) @5#.
The quantum version of those systems were studied
MacDonald and Kaufman@6#. They found that for the circu-
lar billiard the energy level separation was a Poisson-
distribution, while the noncircular billiard presented
Wigner-like distribution, exhibiting mutual repulsion o
neighboring levels. They also found that the eigenfunct
nodal curves for the stadium exhibited a noncrossing irre
lar pattern. For the circular billiard, the eigenfunction nod
curves are concentric circles.

A very interesting quantum manifestation of classic
chaos first observed in billiards@6,13# is that many of the
eigenfunctions of the quantum problem appear to coale
around the~unstable! classical periodic orbits of the system
These larger than expected probability densities are local
around channels forming simple shapes, the so-ca
‘‘scars’’ of periodic orbits. The presence of scars is seen
an indication of non-integrability of these systems.

After the seminal work of Bohigaset al. @7#, it was shown
@2,3# that the level spacing statistics in a variety of quant
systems with chaotic classical counterparts is well descri
by random matrix theory~RMT! @14#. That is, the level spac
ing distributions for those quantum systems are in excel
agreement with the spacing distribution between consecu
eigenvalues of the random matrix. Although the energy le
spacing statistics for a variety of quantum systems that
chaotic when treated classically are described by RMT
was found recently that two systems which are chaotic c
sically, namely, the hydrogen atom in a magnetic field an
PRE 581063-651X/98/58~3!/2693~4!/$15.00
-
n-

e
der

s

be

y

e

n
-

l

l

ce

ed
d
s

d

nt
ve
l

re
it
s-
a

two-dimensional quartic oscillator, have in the quantum
gime an energy level spacing distribution drastically diffe
ent from the expected Wigner distribution@11#

In spite of some progress in the theoretical developme
concerning the signatures of chaos in quantum system
rigorous procedure to fingerprint chaos in such system
still lacking. One fundamental reason for this problem is th
chaos in classical mechanics is defined in terms of the ex
nential divergence of neighboring trajectories, while the ve
concept of a trajectory is absent in conventional quant
mechanics. One way to cope with this problem is to ad
Bohm’s formulation of quantum mechanics@15–17#, in
which particle trajectories are well-defined and, con
quently, the definition of chaos in classical mechanics can
naturally extended to the quantum domain. In fact, Bo
and Hiley @16# were the first to propose the application
Bohm’s theory to the problem of quantum chaos. Th
speculated on the possibility of chaotic behavior for a sin
particle in a two-dimensional box. Since then some pap
have appeared dealing with applications of Bohm’s quant
mechanics to the study of chaos@18#.

One should note that when a statistical ensemble of p
ticles trajectories is incorporated into Bohm’s theory, the
sults will be identical to those of conventional quantum m
chanics. That is, by averaging over the initial positions of
particle, one obtains the same results as those of con
tional quantum mechanics. In the averaging procedure th
may be contributions from chaotic as well as from nonch
otic trajectories arising from different initial conditions. Bo
hm’s theory has the advantage that it can separate cha
from non-chaotic behavior arising from distinct initial con
ditions. Such an insight cannot be inferred from conventio
quantum mechanics alone.

In the present paper, we investigate the quantum probl
of square and circular billiards within the determinist
framework of Bohm’s quantum mechanics. We would like
discover whether or not the statistical properties of the eig
value spectra have anything to do with the actual motion o
quantum particle when its dynamics is governed by Bohm
mechanics. That is, we want to know whether the Wign
R2693 © 1998 The American Physical Society
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~Poisson! distribution of energy levels necessarily implie
that the system will behave chaotically~regularly! or other
criteria apply.

The deterministic interpretation of Bohm’s quantum m
chanics@15# arises when we express the wave function in
form c5R exp(2iS/\) and rewrite the Schrodinger equatio
as conditions on both the phaseS(r ,t) and amplitudeR(r ,t).
The real and imaginary parts of the equations can be s
rated, yielding a pair of equations for the squared amplitu
r5R2 and phaseS,

]r

]t
1“•S r“S

M D50, ~1!

]S

]t
1

~¹S!2

2M
1V1Q50, ~2!

where M is the mass of the particle andQ
52(\2/2M )/(¹2R/R) is the so-calledquantum potential.
The first equation represents the usual conservation of p
ability. The similarity between Eq.~2! and the Hamilton-
Jacobi equation led Bohm to define the momentum of
quantum particle, just as in classical mechanics, asMV
5“S @15#. The velocity of the particle is then given in term
of the wave function by

V~x,y,t !5
\

2Mi
~c*“c2c“c* !/~c* c!. ~3!

The particle is assumed to have a well-defined position an
velocity, given by Eq.~3!, which upon integration yields the
trajectories. The presence of the quantum potential indic
that the particle is guided by a wave that is the solution to
Schrodinger equation, just as in the pilot wave picture p
posed earlier by de Broglie@19,20#. In this way, the quantum
dynamics is completely understood as the motion of a p
ticle experiencing forces from both classical and quant
potentials. Newton’s second law, modified by the prese
of the quantum force, can be written as

M
d2r

dt2
52“~V1Q!ur5r ~ t! . ~4!

Hence, quantum mechanics can be described in a way sim
to classical mechanics, and it seems reasonable to us
same criteria to characterize the dynamical state of the
tem. The quantum trajectories of the particle are obtained
first solving the time dependent Schrodinger equation, t
by determining the quantum potential, and finally by in
grating the modified Newton’s equation, Eq.~4!. An equiva-
lent, but more practical, way to accomplish that is by in
grating the guidance formula Eq.~3! directly, for a given
initial position (x0 ,y0).

Let us first consider a particle in a two-dimension
square box of sideL. The wave function can be built from
components of the set of eigenfunctions of the energy,

umn~x,y!5~2/L !sin~kxx!sin~kyy!, ~5!

where kI5nIp/L. The complete time dependent solutio
will involve a linear combination of these eigenstates:
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c~x,y,t !5(
m,n

Cmnumn~x,y!exp~2 iEmnt/\!, ~6!

where Cmn are complex coefficients, andEmn5(\2/
2M )(kx

21ky
2) are the energies of the system. At this poi

we would like to mention that aqualitativediscussion on the
dynamics of a particle in a two-dimensional box was giv
earlier by Bohm and Hiley@16#. They noticed that from Eqs
~3! and ~6! the expression for the velocity of the particle
the box contains a large number of small terms involvi
combinations of sines and cosines. As time evolves, th
terms change rapidly, and more so the higher the quan
numbersm andn. Although the ratio of the frequencies fo
thex andy components is rational, it will approach the ca
of incommensurability in the limit of large quantum num
bers. Consequently, the expression for the velocity cons
of many terms having complex phase relations with o
other. Bohm and Hiley argued that the particle motion wou
be, in a way, similar to a Lissajous figure. They claimed th
in a real box~where irregularities are present! the frequen-
cies and wave numbers would be related incommensura
and the particle motion would be chaotic-like. We shall s
below that the motion of the particle in the~ideal! box can be
quite complex even when we consider an initial wavepac
consisting of just a few eigenfunctions with low quantu
numbers, and that chaotic behavior is manifested even if
walls have no irregularities.

We now discuss the results of our calculations for t
particle in the square box. As the initial wavepacket,
consider linear combinations involving only a few of th
lowest eigenfunctions. In all of our numerical analysis, w
set\52M51. The linear size of the box is taken asL51.
The integration of Eq.~3! is carried out by using a fourth
order fixed step Runge-Kutta routine with an integration s
dt50.001. We find that the particle dynamics is strong
dependent on the form of the initial wavepacket. Notice t
because of the absence of any position dependent phase
tor in the eigenfunctions of the particle in a square box@Eq.
~6!#, if a particle was in a single eigenstate it would remain
rest for all times. Consider the following initial wavepacke
c(x,y,0)5u11(x,y)1u12(x,y)1 iu21(x,y), with the particle
initially at (x0 ,y0)5(0.8,0.5). The trajectory of the particl
in the (x,y)-plane is depicted in Fig. 1~a!.

That particular choice of initial conditions led the partic
to pass through the center of the box on every turn. O
should notice that the particle never hits the walls; this is d
to the presence of a strong repulsive quantum potential n
the walls. A different choice of the initial position can giv
rise to an entirely new trajectory, depending on whether
not that point lies inside the basin of attraction of the origin
attractor. On the other hand, a change in the initial wa
function will generate an altogether different quantum pot
tial and, consequently, an entirely new trajectory for the p
ticle. The type of motion shown in Fig. 1~a! can be
characterized by looking, for example, at the Poincare´ sec-
tion, plotted in Fig. 1~b!. The distribution of points on tha
curve indicates that the motion is quasi-periodic. This is c
firmed by both the power spectrumF(v) shown in Fig. 1~c!,
where only a few sharp peaks are present, and by the
that largest Lyapunov exponent is zero.
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Figure 2~a! shows a new particle trajectory resulting fro
using c(x,y,0)5u12(x,y)1 iu21(x,y)1gu23 as the initial
wave packet, (x0 ,y0)5(0.5, 0.25) as the initial position
with g51. The particle’s trajectory looks quite irregula
even for such a simple wave function. The scattered point
the Poincare´ section plot@Fig. 2~b!# and the broad spectrum
shown@Fig. 2~c!# indicate that the motion of the particle
chaotic. As the coefficientg is lowered towards zero th
power spectrum gets less noisy~the largest positive
Lyapunov exponent gets smaller!, indicating that the particle
motion is less chaotic, untilg reaches zero, when the partic

FIG. 1. Quantum particle trapped in a two-dimensional box
sidesL. The system of units is such that\52M51 and the length
unit is the linear sizeL of the box. The wave packet fort50 was
chosen to bec(x,y,0)5u11(x,y)1u12(x,y)1 iu21(x,y) and the ini-
tial position of the particle was~0.8, 0.5!. ~a! Actual trajectory of
the particle in the (x,y) plane;~b! Poincare´ plot in the (y,vy) plane;
~c! power spectrumP( f ) for the time series ofx(t). The power
spectrum is shown in arbitrary units.
in

describes a circular motion about the center of the b
These results are in disagreement with the criteria previou
used to characterize quantum chaos, based on the distrib
of nodes@6# or on the distribution of energy states@6,7#.

We have also studied the case of a particle in a circu
billiard. The analysis is similar to the case of the squa
billiard. We found that the particle can have either regular
chaotic types of motion, depending on the initial wa
packet and initial position, just like in case of the squa
billard. Therefore, the details of our calculations for the p
ticle in the circular billiard will not be reported here, sinc

f
FIG. 2. Quantum particle moving in the square box whose lin

size is L. The initial wave packet isc(x,y,0)5u12(x,y)
1 iu21(x,y)1u23(x,y), with starting position at~0.5, 0.25! in units
of the box sizeL. In the system of units used,\52M51. ~a!
Actual particle’s trajectory in the (x,y) plane;~b! phase portrait in
the (y,vy) plane;~c! power spectrumP( f ) from the time series of
x(t) showing a broadband, which indicates chaotic motion.
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the outcomes are qualitatively the same as those of
square billiard.

To summarize, we have discussed the dynamics o
quantum particle in square and circular billiards. We fi
that for both geometries the motion of the particle can
either regular or chaotic, depending on the initial form of t
wave packet and on the particle’s initial position. This is
surprising result, even from Bohm’s point of view, in that
linear combination containing only a few eigenfunctions
already sufficient to produce very complex trajectories. W
conclude that the dynamics of the particle, as described
Bohm’s quantum mechanics, is not determined by the dis
bution of the eigenvalue spectra: In both cases investiga
the level spacing follows a Poisson-like distribution, whi
would suggest regular behavior, yet we found instan
where the motion is clearly chaotic. Moreover, the chao
nature of Bohmian trajectories is not dictated by whether
s
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not the underlying classical Hamiltonian counterpart is c
otic. In the two cases we studied, the classical versions
not chaotic, yet we find instances where the Bohmian or
do show chaos. That can be understood from the fact tha
Bohm’s picture the wave function introduces an addition
interaction, the quantum potential, into the system. It follo
that by studying Bohmian trajectories one cannot distingu
systems with chaotic classical counterparts from syste
with nonchaotic classical analogues.
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